منابع مشابه
Disfluency Detection Using Multi-step Stacked Learning
In this paper, we propose a multi-step stacked learning model for disfluency detection. Our method incorporates refined n-gram features step by step from different word sequences. First, we detect filler words. Second, edited words are detected using n-gram features extracted from both the original text and filler filtered text. In the third step, additional n-gram features are extracted from e...
متن کاملKnock-Knock: Acoustic object recognition by using stacked denoising autoencoders
This paper presents a successful application of deep learning for object recognition based on acoustic data. The shortcomings of previously employed approaches where handcrafted features describing the acoustic data are being used, include limiting the capability of the found representation to be widely applicable and facing the risk of capturing only insignificant characteristics for a task. I...
متن کاملYOLOv3: An Incremental Improvement
We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that’s pretty swell. It’s a little bigger than last time but more accurate. It’s still fast though, don’t worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite ...
متن کاملObject Detection Using Keygraphs
We propose a new framework for object detection based on a generalization of the keypoint correspondence framework. This framework is based on replacing keypoints by keygraphs, i.e. isomorph directed graphs whose vertices are keypoints, in order to explore relative and structural information. Unlike similar works in the literature, we deal directly with graphs in the entire pipeline: we search ...
متن کاملFake News Detection using Stacked Ensemble of Classifiers
Fake news has become a hotly debated topic in journalism. In this paper, we present our entry to the 2017 Fake News Challenge which models the detection of fake news as a stance classification task that finished in 11th place on the leader board. Our entry is an ensemble system of classifiers developed by students in the context of their coursework. We show how we used the stacking ensemble met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ingénierie des systèmes d information
سال: 2020
ISSN: 1633-1311,2116-7125
DOI: 10.18280/isi.250517